

Technical Data Sheet

Pressure / Temperature / Humidity / Air Velocity / Airflow / Sound level

Pitot tube

NPL type (L / straight)

CE

PRESENTATION

KIMO offers a broad range of Pitot tubes of great quality and accuracy realised according to the NF X 10-112 norm.

The KIMO **Pitot tubes**, connected to a differential column of liquid manometer, with needle or electronic, enable to measure the dynamic pression of a fluid in movement in a pipe and determine its speed in m/s and its flow in m³/h.

The **Pitot tubes** are used in climatic engineering, ventilation, dust-removal and pneumatic transport. They are particularly adapted for measurement in warm air, charged with particles and for high speed.

Pitot tube L type

Pitot tubes with ellipsoidal top. A total pressure port and six holes of static pressure. Body in full stainless steel.

Pitot tube L type with K TC

Pitot tubes with ellipsoidal top. A total pressure port and six holes of static pressure.

K thermocouple probe lined integrated with connecting cable of 1.5 meter long. Body in full stainless steel.

Pitot tube straight type and straight type with K TC

It enables to carry out measurement directly by immersing the tube in the air-diffusing equipment.
Diameter and sizes: same as the NPL curved Pitot.

FEATURES

Model	AFNOR NF		
Coefficient	1,0015±0,01		
Material	Stainless steel 316 L		
Measurement range	0 to 100 m/s		
Temperature of use	from 0 to 600 °C in standard and until 1000 °C in option		
Static pressure	2 bar maximum in static, hereafter on request		
Global accuracy of the measurement system	Better than 1% for an alignment in relation to the flow axis of the fluid of ±10 °.		
Norms	AFNOR NFX10-112. Annex of the 77.09.14 This norm is in accordance with the international norm ISO 3966.		

112

224

70

16

PRESENTATION OF THE RANGE

Pitot tubes L type and straight type

25

50

Pitot tube Ø 14 mm

Pitot tubes L type and straight type with K TC

Diameter	Reference L type	Reference straight type	Length	Diameter	Reference L type	Reference straight type	Length
Ø 3 mm	TPL-03-100 TPL-03-200 TPL-03-300	TPL-D-03-100 TPL-D-03-200 TPL-D-03-300	100 mm 200 mm 300 mm	Ø 3 mm	TPL-03-100-T TPL-03-200-T TPL-03-300-T	TPL-D-03-100-T TPL-D-03-200-T TPL-D-03-300-T	100 mm 200 mm 300 mm
Ø 6 mm	TPL-06-300 TPL-06-500 TPL-06-800	TPL-D-06-300 TPL-D-06-500 TPL-D-06-800	300mm 500 mm 800 mm	Ø 6 mm	TPL-06-300-T TPL-06-500-T TPL-06-800-T	TPL-D-06-300-T TPL-D-06-500-T TPL-D-06-800-T	300 mm 500 mm 800 mm
Ø 8 mm	TPL-08-1000 TPL-08-1250	TPL-D-08-1000 TPL-D-08-1250	1000 mm 1250 mm	Ø 8 mm	TPL-08-1000-T TPL-08-1250-T	TPL-D-08-1000-T TPL-D-08-1250-T	1000 mm 1250 mm
Ø 12 mm	TPL-12-1500 TPL-12-2000	TPL-D-12-1500 TPL-D-12-2000	1500 mm 2000 mm	Ø 12 mm	TPL-12-1500-T TPL-12-2000-T	TPL-D-12-1500-T TPL-D-12-2000-T	1500 mm 2000 mm
Ø 14 mm	TPL-14-2500 TPL-14-3000	- TPL-D-14-3000	2500 mm 3000 mm	Ø 14 mm	TPL-14-2500-T TPL-14-3000-T	-	2500 mm 3000 mm

WORKING PRINCIPLE

The **Pitot tube** is introduced perpendicularly in the pipe by pre-determined points (cf. "Measurement").

The antenna composed of an ellipsoidal nose (bow) maintained in parallel and in front of the flow to control.

The total pressure (+) is picked up by the bow and is connected to the + sign of the manometer.

The static pressure (-) picked up by the small holes located around the antenna is connected to the - sign of the manometer.

The connecting cable of the K thermocouple is connected to the input K of the manometer (for the **Pitot tube type L** with **K TC**).

The device then indicates the dynamic pressure, sometimes called speed pressure.

The dynamic pressure corresponds to the difference between total pressure and static pressure: **Dp = Tp-Sp**

APPLICATION

Transmitter sensor low differential pressure CP210 and SQR/3

Transmitter sensor low differential pressure with digital display C310 or CA 310 with SPI 2 – 100,500,1000, 10000 and SQR/3

Multifunction intelligent portable AMI 310

• Measurement of punctual speed

$$S = C_F \sqrt{\frac{2\Delta P}{\rho}}$$
 $\rho = \frac{P_o}{287.1 \times (\Theta + 273.15)}$

With

 $\mathbf{C}_{_{\mathrm{F}}}$: coefficient of the flow device element

Pitot tube L : $C_{E} = 1.0015$

Θ: given temperature (°C)

P₀: given atmospheric pressure (Pa)

Flow measurement

Average (A) of several measurements of punctual speed according to Log-Tchebychev (see measurement scheme above).

Flow calculating:

Flow = Speed_{α} x surface x 3600

<u>Surface</u>: surface of the circular sheath or rectangular in m²

N.B: in the electronic devices, the surface is automatically adjustable.

Flow: in m³/h Surface: in m² S,: in m/s

0.0

0.0

0.0

0.0

0.939

Length

Ю.

0

ェ

Ö.

Ö

ェ

Ö.

0

 \circ

Ö

___ 0,563 0,765 ___ 0,288

0.061

OPTIONS

- Graduation (mm) with red mark on the shaft, on request
- TIG Welding for a use until 1000°C (exception : Pitot tube Ø 3)

ACCESSORIES

- Gland in plated brass (for the installation of Pitot tubes for fixed station)
- Mounting flange stainless steel and cast iron
- Sliding connections with stainless steel turn or Teflon
- Extension cable for K thermocouple class 1
- Stopper cap in caoutchouc : bag of 10 pieces
- Caps: bag of 10 pieces
- Tubes : → Black silicone (4 x 7 mm) REF SN-47-1
 - → Transparent silicone (4 x 7mm) REF SB-47-1
 - → Cristal tube (5 x 8 mm) REF C-58-1
- Transport case VTP type for Pitot tubes :
 - → 1210 X 320 mm, length 1000mm, max. Ø8
 - → 810 X 100mm, length 500mm, max. Ø6
- 555 F/F: spherical ball valve female / female
- J.Y.C: junctions in Y for a tube Ø 5 x 8 mm (bag of 10)
- J.T.C: junctions in T for a tube Ø 5 x 8 mm (bag of 10)

For every other cases, KIMO offers special realisations. Consult us, we intervene on plans study, machining.

www.kimo.fr

Distributed by:

EXPORT DEPARTMENT

Tel: +33. 1. 60. 06. 69. 25 - Fax: +33. 1. 60. 06. 69. 29

e-mail: export@kimo.fr